- Individual view on approaches and theories to learning (e.g., discovery learning, Gestalt psychology, problem-solving, hierarchical learning structures, constructivism)
- Differences in learning (e.g., gender, mathematical ability)
- Social/Cultural view–situated cognition, language, ethnomathematics
- Impact of teaching and attitudes on student achievement
- Meaning in the teaching of mathematics—learning mathematics with understanding
- Influence of constructivism in mathematics education
- Role of beliefs in learning and teaching
- Concept development
- Understanding, analyzing, and engaging in mathematics education research

II. References

• Carpenter, Dossey, & Koehler (Eds.). (2004). *CI-2.8. ได)-(ป*ก)-*Q(c)-AC : മିଗ୍ର - E2 ଯିକ୍ତ - Bair - Bai*

- - Groth. (2013). *Teaching Mathematics in Grades 9-12: Developing Research-Based Instructional Practices.* Sage.
 - Lester, F. (2010). *Teaching and Learning Mathematics: Translating Research for Secondary School Teachers*. Reston, VA: NCTM.
 - Mathematical Sciences Education Board & National Research Council. (1990). Reshaping School Mathematics: A Philosophy and Framework for Curriculum. Washington DC: National Academies Press.
 - WaithorDahAls&essmatl A Nios CihrosTAM 00/ 200m2\plan0(h1)et(3)ASOEMMCI/nLiaswrs

- Issues concerning algebra and algebraic thinking in state and national curricular standards
- Learning and teaching algebraic thinking
- Assessment and remediation of common errors in algebra
- Exploring the Fundamental Theorem of Algebra and problem solving
- Exploration of content and method relative to all types of functions (e.g., radical, rational, exponential, linear)

•

- Exploration into geometric proof, utilizing multiple approaches
- Learning and teaching geometric proof
- Assessment and remediation of common errors in geometry
- Exploration of content and method relative to key concepts in geometry (e.g., lateral area, surface area, volume, Pythagorean Theorem, trigonometric functions)
- Applications of all types of representations (e.g., algebraic expressions, graphing)
- Understanding content and applications of congruency, similarity, coordinate geometry

II. References

- <u>California Mathematics Framework (2013, 2023)</u>: https://www.cde.ca.gov/ci/ma/cf/
- <u>California Common Core State Standards for Mathematics (2010, 2013, 2014)</u>: https://www.cde.ca.gov/be/st/ss/documents/ccssmathstandardaug2013.pdf
- <u>Common Core State Standards for Mathematics (2010)</u>: http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf
- Tomas, D. A. (2002). *Modern Geometry*. Brooks/Cole.
- Select NCTM Publications/Journal articles (e.g., *Navigating through Geometry, Grades 6-8,* 2002; *Navigating through Geometry, Grades 9-12,* 2002)
- Current high school and college geometry texts (e.g., *College Geometry: A Discovery Approach*, 2nd ed., 2001, by D. C. Kay)

- The nature and process of mathematical modeling
- The role of modeling as a scientific endeavor
- The role of modeling in secondary school education
- Modeling curriculum, instructional practices, and student learning
- Linear models and linear regression, line fitting and approximation criteria
- Empirical modeling. Linearizable models
- Polynomial models, multiple regression

•

- Issues concerning probability and statistics in state and national curricular standards
- •